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Let X ∼ Np(θ, σ2Ip) and W ∼ σ2χ2
m, where both θ and σ2 are

unknown, and X is independent of W . Optimal estimation of θ with
unknown σ2 is a fundamental issue in applications but basic theoret-
ical issues remain open. We consider estimation of θ under squared
error loss. We develop sufficient conditions for prior density functions
such that the corresponding generalized Bayes estimators for θ are
admissible. This paper has a two-fold purpose: 1. Provide a bench-
mark for the evaluation of shrinkage estimation for a multivariate
normal mean with an unknown variance; 2. Use admissibility as a
criterion to select priors for hierarchical Bayes models. To illustrate
how to select hierarchical priors, we apply these sufficient conditions
to a widely used hierarchical Bayes model proposed by Maruyama &
Strawderman [M-S] (2005), and obtain a class of admissible and min-
imax generalized Bayes estimators for the normal mean θ. We also
develop necessary conditions for admissibility of generalized Bayes
estimators in the M-S (2005) hierarchical Bayes model. All the re-
sults in this paper can be directly applied in the familiar setting of
Gaussian linear regression.

1. Introduction. Estimation of the mean for a multivariate normal
distribution has received enormous attention, and is also of substantial
importance in contemporary statistical theory and application. Suppose
X ∼ Np(θ, σ2Ip), and we use squared error loss. Stein discovered that when
p ≥ 3, the usual maximum likelihood estimator, x, is not the best estima-
tor of the unknown normal mean θ, when σ2 is known and unknown but
estimable. James and Stein (1961) provided an explicit class of dominating
estimators. They provided results for both the cases of known σ2 and of
unknown σ2. A variety of modifications and generalizations of it are often
referred to as statistical shrinkage estimators because of the way they act to
improve on the usual estimators.

Our focus is on the case of unknown but estimable σ2. Various authors
have proposed hierarchical Bayes priors for this setting. See especially Straw-
∗Supported in part by NSF Grant DMS-07-07033
AMS 2000 subject classifications: 62C15, 62C10
Keywords and phrases: normal mean problem, admissibility, generalized Bayes estima-

tor, unknown variance, shrinkage estimator, minimaxity

1

http://www.imstat.org/aos/


2 L. D. BROWN AND X. HAN

derman (1973), Maruyama & Strawderman (2005) and Wells & Zhou (2008).
Some of these priors are “proper” (i.e. have mass one). But a broad class
are generalized priors (i.e. have infinite mass but finite formal posterior dis-
tributions as discussed in Berger (1985)). The proper priors of course lead
to admissible estimators, but only some of generalized priors do so. As dis-
cussed below this admissibility issue has been previously investigated for the
case of known variance, σ2. Our focus is on the case of unknown variance.
Maruyama & Strawderman (2005) and Wells & Zhou (2008) have investi-
gated minimaxity properties of both (proper or generalized) Bayes estima-
tors in this setting. Our focus is on the admissibility of these (generalized)
Bayes estimators. We develop a general result in Theorem 1 and then apply
it to the Maruyama & Strawderman (2005) estimators in section 3.2.

1.1. Background. Assume that the variance scalar σ2 is known. For ad-
missibility, Brown (1971) characterized all admissible estimators as being
generalized Bayes (but not conversely). By Brown’s theorem, the James-
Stein estimator is not admissible because it is not of analytic form, and thus
it could not be generalized Bayes. Brown (1971) also gives sufficient and
nearly necessary conditions for admissibility of generalized Bayes estimators.
These results aid in the construction of admissible estimators. Strawderman
(1971) used a hierarchical Bayes model to obtain a class of proper Bayes
minimax estimators (which are of course admissible). Based on applications
of Brown’s (1971) conditions, Berger & Strawderman (1996), and Berger,
Strawderman & Tang (2005) examined the admissibility and inadmissibility
of several commonly used generalized Bayes estimators.

For minimaxity, the usual maximum likelihood estimator x is minimax,
and any improvement is also minimax. Therefore James-Stein estimators
are minimax. A substantial number of papers have applied Stein’s unbiased
estimate of risk, and have obtained a wide class of minimax Bayes estimators.
It is impossible for us to list all the references here, but interested readers
are referred to the celebrated paper by Stein (1981) and applications shown
by Efron & Morris (1971, 1972, 1975). Additional references can be found
in Berger (1985) and Lehmann & Casella (1998).

However, most of the time, in practical problems the variance scalar σ2

is unknown . To deal with this important case one approach is to use an
estimate of σ2 and then plug it in to treat the problem as if it were a known
variance case. A well known example is the James-Stein positive part plug in
estimator provided by James & Stein (1961). Another approach is to use a
hierarchical Bayes model to put an objective prior on σ2, and then consider
the corresponding Bayes estimators.
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For admissibility, to the best of our knowledge, very few results have
been obtained because of the technical difficulty. Strawderman (1973) used
a hierarchical Bayes model to construct a class of proper Bayes estimators for
the unknown variance case. But admissibility of generalized Bayes estimators
is still an open and important problem.

1.2. Outline and Contributions. In the current paper, we address the
problem of optimal estimation for the multivariate normal mean with an
unknown variance. Our theoretical results and technical contributions can
be summarized as the following three parts:

• We develop sufficient conditions for prior density functions such that
the corresponding generalized Bayes estimators are admissible.
Compared with the existing results for the known variance case (e.g.,
Brown & Hwang 1982), the technical difficulties in the unknown vari-
ance case come from (a) the improper prior on the variance and (b)
the dependence of the normal mean parameter on the variance in the
hierarchical Bayes model. The fundamental tool to prove admissibil-
ity is Blyth’s method. In the current paper, we first provide a new
sequence of priors for application of Blyth’s method. These enable us
to develop new uniform upper bound for the sequence of differences
between the two Bayes risks that occur in Blyth’s method.
• We apply our sufficient conditions to a widely used hierarchical Bayes

model studied in M-S (2005), and obtain a class of admissible and
minimax generalized Bayes estimators.
Application of general admissibility theorems to a particular hierar-
chical Bayes model can be very technical even in the known variance
case, see Berger & Strawderman (1996) and Berger, Strawderman &
Tang (2005). In the present case appropriate and careful calculation is
needed to establish specific admissibility conditions for the Maruyama
& Strawderman (2005) priors. In the current paper, we develop a
technique based on the order of magnitude for marginal densities and
derivative of marginal densities. The technique itself is of independent
interest, and has applications in hierarchical Bayes modeling.
• We develop necessary conditions for admissibility of generalized Bayes

estimators in the M-S (2005) hierarchical Bayes model.
The results here are used to investigate the sharpness of sufficient con-
ditions developed in the current paper. The proof is based on a gen-
eral theorem in Brown (1980), but technical issues of applying Brown
(1980) to the unknown variance case are new. Our results can be con-
sidered as an important step to establish more general and sharper
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necessary conditions in the unknown variance case.

Admissibility together with minimaxity provides a benchmark for the
evaluation of shrinkage estimators. For example, the James-Stein positive
part plug in estimator, various empirical Bayes estimators and generalized
Bayes estimators have been shown to lead to satisfactory results in statistical
data analysis. A wide range of applications can be found in Blattberg &
George (1991), DuMouchel & Harris (1983), Fay & Herriot (1979), Gelfand,
Hills, Racine-Poon & Smith (1990), Hui & Berger (1983), Jorion (1986),
Zellner & Hong (1989), etc. However, there has not been any theoretical
work to evaluate whether these shrinkage estimators are admissible or close
to being admissible, and these estimators can be sub-optimal. Several of
these applications involve situations that generalize the formulation in our
paper, but our work in admissibility is an important step in the study of
these more general situations.

Several authors have described admissibility as a powerful tool to select
satisfactory hierarchical generalized Bayesian priors. In particular, Berger &
Strawderman (1996), and Berger, Strawderman & Tang (2005) considered
the estimation of the normal mean when the variance is known. They dis-
cussed several hierarchical Bayesian models for the normal mean parameter
θ and used admissibility as a criterion to select hierarchical priors. Berger,
Strawderman & Tang (2005) pointed out, “Use of objective improper pri-
ors in hierarchical modeling is of enormous practical importance, yet little
is known about which such priors are good or bad. The most successful
approach to evaluation of objective improper priors has been to study the
frequentist properties of the ensuing Bayes procedures. In particular, it is
important that the prior distribution not be too diffuse, and study of admis-
sibility is the most powerful tool known for detecting an over-diffuse prior.”
Also Berger (1985) has pointed out, “Prior distributions which are on the
boundary of admissibility are particularly attractive noninformative pri-
ors.” Berger & Bernardo (1992), “Comparison and choice of noninformative
priors must involve some type of frequentist computation and that consid-
eration of admissibility of resulting estimators is an often enlightening
approach.” [Our italics.]

The rest of our paper is organized as follows: section 2 includes concepts,
notation and formulation of the problem, with relation to linear regression
models; section 3 provides theorems giving sufficient and necessary condi-
tions for admissibility of generalized Bayes estimators, with related lemmas;
section 4 provides numerical analysis and investigation of the performance
of particular generalized Bayes estimators, including those from M-S (2005);
section 5 provides all the technical proofs.
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2. Definition and Notation. Let X ∼ Np(θ, σ2Ip) be a p-dimensional
multivariate normal random vector, with unknown mean vector θ = (θ1, · · · , θp)T
and unknown variance scalar σ2. Here Ip is the p × p identity matrix. Let
W ∼ σ2χ2

m, where W and X are independent. For convenience, from now
on, we will reparameterize σ2 in terms of the precision η2 = 1/σ2. Corre-
spondingly we have

(1) X ∼ Np(θ, η−2Ip) W ∼ η−2χ2
m.

With observations x = (x1, · · · , xp)T and w, we use a procedure δ(x, w) =
(δ1(x, w), · · · , δp(x, w))T : Rp × R → Rp to estimate the unknown normal
mean θ.

Consider the normalized squared error loss function

(2) L(θ, η2, δ(x, w)) = ||δ(x, w)− θ||2η2 =
p∑
i=1

(δi(x, w)− θi)2η2.

Then the corresponding risk function will be

(3) R(θ, η2, δ(x, w)) = Eθ,η2L(θ, η2, δ(x, w)).

Definition 1. An estimator δ1 is inadmissible if there exists another es-
timator δ2 such that R(θ, η2, δ2) ≤ R(θ, η2, δ1) for all θ, η2 and R(θ, η2, δ2) <
R(θ, η2, δ1) for some θ, η2. An estimator is admissible if it is not inadmis-
sible.

Our goal is to construct sufficient conditions for admissibility of estimators
of the normal mean θ.

Focus first on the ordinary Bayes estimators. So assume for now thatG is a
probability distribution on Rp×R. By definition a Bayes estimator minimizes
the posterior risk. Thus the Bayes estimator, δG, solves the minimization
problem:

B(G) ≡
∫ ∞
0

∫
Rp
R(θ, η2, δG)G(dθ, dη2)(4)

≡ inf
δ:Rp×R→Rp

∫ ∞
0

∫
Rp
R(θ, η2, δ)G(dθ, dη2),

where the preceding also defines the usual symbol, B(G), for the Bayes risk.
And we have δG = argmind∈RpE(L(θ, η2,d)|x, w). Take the derivative of
E(L(θ, η2,d)|x, w) with respect to d and set it equal 0. This leads to the
expression:

(5) δG(x, w) =
∫∞
0

∫
Rp θη2f(x|θ, η2)f(w|η2)G(dθ, dη2)∫∞

0

∫
Rp η2f(x|θ, η2)f(w|η2)G(dθ, dη2)

,
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where

f(x|θ, η2) ∝ (η2)p/2 exp(−||x− θ||2

2
η2)(6)

f(w|η2) ∝ w(m−2)/2(η2)m/2 exp(−wη
2

2
).(7)

If G is a finite (non-negative) measure, then
∫∞
0

∫
Rp G(dθ, dη2) < ∞, and

G(dθ,dη2)∫∞
0

∫
Rp G(dθ,dη2)

is a probability measure. The definition for Bayes risk in

(4) and Bayes estimator in (5) of probability measure can be extended to
a finite measure. The definition in (5) can be further extended to hold for
general (non-negative) measures G so long as the integrals in the numerator
and denominator exist for all x, w. In such a case δG is called a generalized
Bayes estimator.

We pay special attention to the following hierarchical Bayes model:

X ∼ Np(θ, η−2Ip) W ∼ η−2χ2
m(8)

θ|η2 ∼ g(θ; η2) η2 ∼ π(η2).

The prior density for normal mean θ depends on η2, which results in a two-
level Bayes model. The prior density functions g(θ; η2) and π(η2) could be
improper (i.e., could correspond to infinite measures). The model of M-S
(2005) described in (20) is a special case.

The corresponding generalized Bayes estimator for the normal mean θ is

(9) δG(x, w) =
∫∞
0

∫
Rp θη2f(x|θ, η2)f(w|η2)g(θ; η2)π(η2)dθdη2∫∞

0

∫
Rp η2f(x|θ, η2)f(w|η2)g(θ; η2)π(η2)dθdη2

.

Note that η2 is considered as the variable of integration. We assume the
existence of the integrals in the numerator and denominator of (9). The goal
is to construct sufficient conditions for the prior density functions g(θ; η2)
and π(η2) such that the generalized Bayes estimator δG(x, w) is admissible
for estimating the unknown normal mean θ with respect to the squared error
loss function (2).

The following remarks sketch some familiar features of our formulation in
order to emphasize its range of applicability. The following remarks taken
from earlier literature show that all the results in this paper related to set up
(1)-(3) can be directly applied in the conventional linear regression setting.

Remark 1 (Relation to General Covariance Matrix Case): Con-
sider a generalization in which X ∼ Np(θ, η−2Σ) with loss function (θ̃ −
θ)′Σ−1η2(θ̃ − θ), where Σ is a known nonsingular symmetric p× p matrix.
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For the present remark we refer to this formulation as “Problem 1”. There
exists a matrix Q such that QTΣQ = Ip. Thus QTX ∼ Np(QTθ, η−2Ip)
with loss function (δ(QTX) − QTθ)′η2(δ(QTX) − QTθ), is equivalent to
our original setting (1)-(3). We refer to this formulation as “Problem 2”. By
Definition 1, if δ(QTX) is admissible for Problem 2, then (QT )−1δ(QTX) is
admissible for Problem 1. Thus our results of admissibility for the original
setting (1)-(3) can be directly applied to Problem 1.

Remark 2 (Relation to Linear Regression Model): Consider the
linear regression setting, y = Mβ + σε, where y is a n-dimensional ob-
served vector, M is a n × p known design matrix, ε ∼ Nn(0, In) is ran-
dom error. Assume M has full rank p. Both the p-dimensional coefficient
vector β and the variance σ2 are unknown. We want to estimate β. The
conventional least squares estimator for β is β̂ = (MTM)−1MTy. Thus

β̂ ∼ Np(β, σ2(MTM)−1) with the loss function (δ − β)′ (M
T M)
σ2 (δ − β) is

equivalent to the setting in Remark 1 if we let Σ = (MTM)−1. Let W be
the sum of squares for residuals. Therefore our results for the original setting
(1)-(3) can be directly applied to estimating the coefficient vector β in the
linear regression model.

3. Main Results.

3.1. Admissibility Theorem. In the setting of (8), let

f(x, w,θ, η2) = f(x|θ, η2)f(w|η2)g(θ; η2)π(η2)(10)

g∗(x, w, η2) =
∫

Rp
f(x, w,θ, η2)dθ,(11)

where f(x, w,θ, η2) is the joint density function of x, w, θ, η2, and g∗(x, w, η2)
is the marginal joint density function of x, w, η2.

The generalized Bayes estimator in (9) can be expressed as

Lemma 1.

(12) δG(x, w) = x +
∫∞
0 ∇xg∗(x, w, η2)dη2∫∞
0 η2g∗(x, w, η2)dη2

.

To find sufficient conditions for admissible generalized Bayes estimators,
the following Condition 1 & 2 are fundamental. These generalize conditions
in Brown & Hwang (1982).

Condition 1.

(13)
∫
Sc

∫ ∞
0

1
η2

g(θ; η2)
||θ||2 log2(||θ|| ∨ 2)

π(η2)dη2dθ <∞.
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where S denote the ball of radius 1 at the origin in Rp, Sc is the complement
of S and a ∨ b is defined as max(a, b). This is called the Growth Condition
on the prior density functions.

The Growth Condition suggests that g(θ; η2) should not have heavy tails.
In particular, this condition will be satisfied if

(14)
∫ ∞
0

g(θ; η2)
π(η2)
η2

dη2 = O(
1

||θ||p−2
).

Conversely the condition will not be satisfied if for some r < p− 2,

(15)
∫ ∞
0

g(θ; η2)
π(η2)
η2

dη2 � 1
||θ||r

as ||θ|| → ∞.
Some commonly used prior density functions do not satisfy Condition 1.

In Gelman, Carlin, Stern & Rubin (2003), on page 74, the authors suggested
a noninformative prior distribution. Assume the prior on (θ, log η) is uniform
or, equivalently,

p(θ, η2) ∝ 1
η2
.

It is easy to check that this prior does not satisfy the Growth Condition.
To simplify our computation, we define J∗(h1, h2) for generic functions

h1 and h2 with domains Rp × R+ and R+:

(16) J∗(h1, h2) =
∫

Rp
f(x|θ, η2)f(w|η2)h1(θ; η2)h2(η2)dθ.

If h1 = (h1
1, · · · , h

p
1)T is a vector, (16) is interpreted as a vector whose ith

coordinate is
∫

Rp
f(x|θ, η2)f(w|η2)hi1(θ; η2)h2(η2)dθ. Note that for the prior

density functions g(θ; η2) and π(η2), J∗(g, π) is equivalent to g∗(x, w, η2) as
defined in (11), but in the notation for J∗(g, π) we emphasize the effects of
the prior density functions g(θ; η2) and π(η2).

Condition 2.
(17)∫

Rp

∫ ∞
0

∫ ∞
0

η2J∗(g||
∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

− 1
η2

∇θg

g
||2, π)dη2dwdx <∞.

This is called the Asymptotic Flatness Condition on the prior density
functions.

In application, Condition 2 may not be easy to verify. A more transparent
but slightly less general condition is
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Condition 3.

(18)
∫

Rp

∫ ∞
0

1
η2

||∇θg(θ; η2)||2

g(θ; η2)
π(η2)dη2dθ <∞.

Condition 3 is satisfied by most examples as shown in section 3.2.

Lemma 2. When Condition 3 holds, then Condition 2 also holds.

Condition 4.

(19)
∫
||θ||<B

∫
η2<B

G(dθ, dη2) <∞, ∀B <∞.

Condition 4 is used to guarantee finiteness of the sequence of measures Gj
described in (33) and (34) of section 5. It is separate from the main part of
the technical proof in Theorem 1. Condition 4 is very mild. It will be shown
later that Condition 4 is satisfied by most M-S (2005) priors and others.

Theorem 1. Consider the hierarchical Bayes model (8). If the prior
density functions g(θ; η2), and π(η2) satisfy Condition 1, 2 and 4, then the
corresponding generalized Bayes estimator (9) for the normal mean θ is
admissible.

Remark 3: For the known variance case, Brown (1971) provides a com-
plete class theorem: admissible estimators must be generalized Bayes. How-
ever, for the unknown variance case, we are not sure if such statement is still
correct. Our current sufficient conditions are just for generalized Bayes esti-
mators. We cannot rule out the possibility that there exist other admissible
estimators which are not generalized Bayes.

3.2. Application to a Hierarchical Prior Setting. Maruyama and Straw-
derman (2005) considered the following hierarchical Bayes model to study
minimaxity:

X ∼ Np(θ, η−2Ip) W ∼ η−2χ2
m(20)

θ|ν, η2 ∼ Np(0, νη−2Ip)

h(ν)dν ∝ νb(1 + ν)−a−b−2dν π(η2)dη2 ∝ (η2)−k−1/2dη2.

Wells & Zhou (2008) also considered a generalization in which h(ν) has a
more general form and investigated minimaxity in this general setting. Like
Maruyama & Strawderman (2005) they investigated (only) minimaxity, not
admissibility. When we apply combination of Theorem 1 and Lemma 2 to
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the hierarchical Bayes model above with the Maruyama and Strawderman
(2005) prior, we obtain a class of admissible generalized Bayes estimators
for the normal mean θ.

Theorem 2. In the hierarchical Bayes model (20), when −a − 3/2 <
k ≤ 1/2, a > −2 and b > 0, the corresponding generalized Bayes estimators
(9) for the normal mean θ are admissible.

Remark 4: Theorem 3 below makes clear that this condition is almost
sharp. We conjecture that even when

−a− 3/2 < k ≤ 1/2, a > −2, b = 0 or(21)
−a− 3/2 = k ≤ 1/2, a ≥ −2, b ≥ 0,(22)

the corresponding generalized Bayes estimators is admissible. Numerical re-
sults such as those shown in Figure 2 also reveal such estimators can have
desirable risk functions.

Han (2009) contains a proof of this conjectured admissibility when −a+
1/2 < k < 1/2 and b ≥ 0, but we do not yet have a complete proof for
all of the boundary points in (21) and (22). In particular we do not have
a proof for k = 1/2, a = −2, b = 0. A solution for this case would be of
particular interest since this is the natural extension of Stein’s harmonic
prior (Stein (1973, 1981)) to our unknown variance problem. See also our
Figure 1 in Section 4.1. The proof for the values −a + 1/2 < k < 1/2 and
b ≥ 0 discussed above involves a considerable extension of the argument in
the current paper, and will appear elsewhere.

It should be noted that for any procedure satisfying (21) there is an
admissible procedure with b = ε > 0 satisfying the conditions in Theorem 2,
and such that the risk functions of the two procedures are uniformly close to
each other. In this sense we may at least say that the procedures satisfying
(21) are nearly admissible even if we are so far unable to prove that some of
the limiting estimators are actually admissible. Among these, the estimator
for a = −2, b = 0 is of particular interest as noted above and in Section 4.

Remark 5: Maruyama & Strawderman (2005) and Wells & Zhou (2008)
give the sufficient conditions for δG in model (20) to exist:

a > −p/2− 1, k < p/2 +m/2 + 3/2, b > −1.

Theorems 1 and 2 implicitly include the conclusion that the posterior dis-
tributions exist under the stated conditions, along with the integrals in the
numerator and denominator of (9).
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M-S (2005) showed that when b ≥ 0, m/2− k− 1/2 > a > −p/2− 1, and
0 ≤ p/2+a+1

m/2−k−1/2−a ≤
2p−4
m+2 , their prior leads to minimax generalized Bayes

estimators. Combining with this result, we have Corollary 1.

Corollary 1. If the following set of restrictions are satisfied:
(23)

b > 0 a > −2 −a−3/2 < k ≤ min(1/2,
2− 2p−m

2p− 4
a+

pm/2− 2p− 3m
2p− 4

),

then the corresponding generalized Bayes estimators (9) are admissible and
minimax.

These conditions are discussed further in section 4.1 and illustrated by
Figure 1.

Remark 6: The set of restrictions (23) also implies that p ≥ 3 and
−2 < a < p/2 − 3 should be satisfied. Therefore, Corollary 1 shows that
there exist admissible and minimax generalized Bayes estimators for p ≥ 3
in model (20) as long as a, b, k for the priors satisfy (23). We should point
out the restriction for k does not involve b beyond the requirement that
b > 0.

3.3. Necessary Condition for Admissibility in a Hierarchical Prior Setting.
We provide a necessary condition for admissibility of generalized Bayes es-
timators in the hierarchical Bayes model (20), which will be compared with
the results in Theorem 2 and illustrated in section 3.2. The purpose here is
to investigate the sharpness of our sufficient conditions for admissibility in
Theorem 2.

Theorem 3. In the hierarchical Bayes model (20), if δG is an admissible
generalized Bayes estimator, then k, a, p and m should satisfy

(24) (a+ 2)m+ (k + a+ 3/2)p+ 1− 2k ≥ 0.

Remark 7: In Theorem 3, (24) ⇔ a ≥ − p−2
m+pk −

2m+ 3
2
p+1

m+p . For finite p,
when m → ∞, p

m → 0, then (24) is a ≥ −2. This matches the sufficient
condition a > −2 in Theorem 2 for a. When m → ∞, it means that the
variance of the normal distribution is known. This result is also consistent
with the well known result for admissibility and inadmissibility in the known
variance case. Another interesting case is that when k = 1/2, then no matter

what values for p and m, (24) is a ≥ −2. Also (24)⇔ k ≥ −m+p
p−2 a−

2m+ 3
2
p+1

p−2 .
For finite m, when p→∞, mp → 0, then (24) is k ≥ −a−3/2. This matches
the sufficient condition k > −a− 3/2 in Theorem 2 for k.
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4. Numerical Analysis.

4.1. Hierarchical Prior Selection. Figure 1 shows the region of admissible
and minimax generalized Bayes estimators for the M-S (2005) estimators.
In this figure p = 10, b > 0, and the figure shows the relationship among k,
a and m for admissibility and minimaxity.

The lowest sloped line [red] is for k = −a−3/2. This is the lower boundary
for admissibility but not inclusive. The remaining sloped lines [in various
colors] are for 2−2p−m

2p−4 a + pm/2−2p−3m
2p−4 with m = 16, 20, 25, 30 respectively.

These are upper boundaries for minimaxity. The line at k = 1/2 is an
upper boundary for admissibility according to our Theorem 2. For example,
when m = 16, the admissible and minimax region is the shadowed triangle
surrounded by the red lines and the blue line. We use the dotted line to
emphasize that the boundary is not currently included in the proven regions
for admissibility and minimaxity.

There are two interesting and special points on the boundary of the ad-
missible and minimax region in Figure 1. The upper boundaries of the min-
imaxity region and the lower boundary of the admissibility region all pass
through a = 2, k = −7/2.

The other special point is for a = −2, k = 1/2. The case when b = 0,
a = −2 and k = 1/2 corresponds to the special situation in which g(θ) ∝
1/||θ||p−2, and π(η2) ∝ 1/(η2)k−1/2. The density for θ is the well known
harmonic prior. See Stein (1981). In this case θ is independent of η2. This
prior is discussed further at the end of Section 4.2.

The necessary condition for admissibility in Theorem 3 can best be un-
derstood by Figure 2. The shadowed region is for admissible estimators in
Theorem 2. The dashed line [red] is for k = −a − 3/2. The horizontal line
[red] is for k = 1/2. The remaining sloped lines [in various colors] are for

k = −m+p
p−2 a−

2m+ 3
2
p+1

p−2 with (p,m) = (10, 250), (50, 150), (150, 40), (250, 10)
respectively. These are upper boundaries for inadmissibility due to Theorem
3. The vertical line [black] is for a = −2. This is the right boundary for
inadmissibility when p is finite and m is ∞. The dashed line [red] is also
the upper boundary for inadmissibility when m is finite and p is ∞. When
the ratio m

p increases from 0 to ∞, the boundary for inadmissibility moves
clockwise from the dashed line k = −a− 3/2 to the vertical line a = −2.

4.2. Comparison with James-Stein Positive Part Estimator. We will com-
pare the generalized Bayes estimators in (20) with the James-Stein positive
part estimators. Applying the prior density functions in (20) to expression



NORMAL MEAN PROBLEM WITH UNKNOWN VARIANCE 13

−3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2

M−S (2005) Hierarchical Bayes Model for p=10, b>0

a

k
Minimax

Admissible
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Fig 1. Admissibility and Minimaxity: The region of minimax estimators includes all those
falling to the left and below the boundaries marked with values of m.
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M−S (2005) Hierarchical Bayes Model
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p=250,m=10
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Fig 2. Admissibility and Inadmissibility: The region of estimators proven to be inadmissible
includes all those falling to the left and below the boundaries marked with values of p and
m.
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(9) yields

δG(x, w) =
∫ 1
0 t

a+p/2(1− t)b+1(w/2 + ||x||2t/2)−m/2−p/2+k−3/2dt∫ 1
0 t

a+p/2(1− t)b(w/2 + ||x||2t/2)−m/2−p/2+k−3/2dt
x

= (1−
∫ 1
0 t

a+p/2+1(1− t)b(1 + t||x||2/w)−m/2−p/2+k−3/2dt∫ 1
0 t

p/2+a(1− t)b(1 + t||x||2/w)−m/2−p/2+k−3/2dt
)x

= (1− Et/(1 + t||x||2/w)m/2+p/2−k+3/2

E1/(1 + t||x||2/w)m/2+p/2−k+3/2
)x.(25)

In the last step, t ∼ Beta(a+ p/2 + 1, b+ 1).
Traditionally, for estimation of the normal mean with an unknown vari-

ance, James-Stein positive part estimators are widely used. Let

(26) δ+
J−S(x, w) = (1− cw

m||x||2
)+x.

Our goal is to find the relationship between c and p,m, a, b, k, and use ad-
missible and minimax generalized Bayes estimator to mimic the James-Stein
positive part estimator. Since the James-Stein positive part estimator is
asymptotically optimal when ||θ||/σ is large, we search for corresponding
admissible and minimax generalized Bayes estimator which has the same
asymptotic property.

Let z = ||x||2/w and

(27) φ(z) = z

∫ 1
0 t

p/2+a+1(1− t)b(1 + zt)−p/2−m/2+k−3/2dt∫ 1
0 t

p/2+a(1− t)b(1 + zt)−p/2−m/2+k−3/2dt
,

then the generalized Bayes estimator can be written as

(28) δG(x, w) = (1− φ(z)
z

)x.

It is easy to show that φ(z) is monotonically increasing in z, and

(29) lim
z→∞

φ(z) = (p/2 + a+ 1)/(m/2− k − 1/2− a).

Also see Maruyama & Strawderman (2005).
Comparing with James-Stein positive part estimator, we have

(30)
c

m
=

p/2 + a+ 1
m/2− k − 1/2− a

.

Note that b is not involved in this relation.
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Fig 3. James-Stein positive part estimator is very close to a minimax and nearly admis-
sible generalized Bayes estimator. The risk plot is based on 30000 round Monte Carlo
simulation.

For the James-Stein positive part estimator, the most popular choice is
c = m

m+2(p − 2). The comparison of the generalized Bayes estimators with
the James-Stein positive part estimator leads to k = 1/2 and a = −2.
As already noted, this set of values is on the boundary of our sufficient
conditions for admissibility. Also see our Figure 1. We consider the case when
p = 10,m = 16, b = 0, a = −2, k = 1/2. The comparison of risk functions
for this generalized Bayes estimator with the corresponding James-Stein
positive part estimator is shown in Figure 3. As noted earlier, our Corollary
1 shows that there are admissible estimators whose risk function is arbitrarily
close to that of this generalized Bayes estimator.

Remark 8: Formula (27) and (28) give an expression for the formal
Bayes estimators under (20). It is evident from this that the estimator is
scale invariant even though the prior is scale invariant only for k = 1/2. The
prior is also rotation invariant. These facts imply that the risk function of
the M-S estimators depends only on ||θ||η = ||θ||/σ. This fact is used in
producing the plots in Figure 3, 4, 5 and 6.

The expression (27) also clarifies somewhat the role of k in model (20).
Note that the functional form of the estimator depends only on −m/2+k =
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−(m − 2k)/2. Thus, a problem having m, k and another problem having
m′, k′ = k + m′−m

2 will have functionally identical estimators.

4.3. Performance of Generalized Bayes Estimators. We first provide an
example to emphasize that only minimaxity is not enough for evaluation
of an estimator’s performance. We will propose a sequence of minimax but
inadmissible generalized Bayes estimators based on the M-S (2005) model
in (20). To illustrate their results and demonstrate the relevance of admis-
sibility we choose several of their priors for p = 10, m = 16, a = −5, b = 0.
We pick k = −10,−5, 0, 5, 10 and make plots of the risk for the correspond-
ing generalized Bayes procedures. According to results of M-S (2005) all of
these estimators are minimax, since k < 91/8. We also include the risk of the
James-Stein positive part estimator in the plot. The illustration is shown in
Figure 4.

The estimator with smaller k value is dominated by the estimator with
larger k value when k = −10,−5, 0, 5, 10. The best of these estimators is the
one for k = 10. All the five estimators are minimax, but the estimators with
k = −10,−5, 0, 5 are certainly not admissible and do not have as desirable
risk functions compared with the two best choices. This suggests that these
four estimators should not be used. The estimator with k = 10 is domi-
nated by the James-Stein positive part estimator when ||θ||η is small, and
slightly dominates this James-Stein estimator in a range of values. The plot
demonstrates that minimaxity is not enough for evaluation of an estimator’s
performance, even when the estimator is generalized Bayes.

The following example more clearly demonstrates that the sufficient con-
ditions in Theorem 2 are almost sharp. We choose p = 10,m = 16, b = 1, k =
1/2, but pick a = 0,−2,−3. a = 0 is in the range of admissibility; a = −2 is
on the boundary for the range of admissibility in Theorem 2 but not inclu-
sive, and on the boundary for the range of inadmissibility in Theorem 3 but
not inclusive; a = −3 is outside of the range of admissibility and in the range
of inadmissibility in Theorem 3. The comparison is shown in Figure 5. From
Figure 5, it is clear that when a = −3 the generalized Bayes estimator is
dominated by the estimator for a = −2 when ||θ||η ≤ 10. More detailed risk
comparison for a = −3 vs. a = −2 is shown in Figure 6. On the range ||θ||η
from 0 to 45, the risk function for a = −2 statistical significantly dominates
the risk function for a = −3. For sufficiently large ||θ||η, by the following
Proposition 1, this risk dominance is still correct. This is consistent with the
fact that a = −3 is outside of the admissibility range in Theorem 2 and falls
with the scope of Theorem 3.

Proposition 1. When ||θ||η is sufficiently large and k = 1/2, the risk
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Fig 4. Inadmissible Minimax Generalized Bayes Estimators: The estimator with smaller
k value is dominated by the estimator with larger k value when k = −10,−5, 0, 5, 10. The
risk plot is based on 30000 round Monte Carlo simulation.
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Fig 5. a = 0 is in the range of admissibility in Theorem 2; a = −2 is on the boundary
of admissibility in Theorem 2 but not inclusive and on the boundary of inadmissibility in
Theorem 3 but not inclusive; a = −3 is in the range of inadmissibility in Theorem 3. The
risk plot is based on 30000 round Monte Carlo simulation.
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Fig 6. Difference in risk for a = −3 vs. a = −2 when p = 10, m = 16, k = 1/2 and b = 1
on the range ||θ||η from 0 to 45 based on 30000 round Monte Carlo simulation.

function for a = −2 dominates the case for a = −3.

The proof of Proposition 1 is similar to the proof of Theorem 3, thus it
is omitted.

5. Proofs. In the section, we provide proofs for the results in Section
3.

Proof of Lemma 1 can be found in Brown (1971).
The proof in Theorem 1 is based on the method in Blyth (1951).

Lemma 3. (Blyth’s method) Let δ be any estimator. Let K denote a
non-empty compact subset of the parameter space. Suppose there is a se-
quence of finite measures Gj such that
(31)

inf{Gj(K) : j = 1, . . .} > 0
∫ ∞
0

∫
Rp
R(θ, η2, δ)Gj(dθ, dη2)−B(Gj)→ 0,

then δ is admissible.

Proof of Lemma 3 can be found in Stein (1955), Farrell (1964) and
Brown (1971).
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In Blyth’s method, we need to calculate the difference between two inte-
grals for the risk function with respect to Gj(dθ, dη2). Thus Lemma 4 will
be useful for our proof.

Lemma 4.∫ ∞
0

∫
Rp
R(θ, η2, δ)G(dθ, dη2)−B(G)(32)

=
∫ ∞
0

∫
Rp
||δG(x,w)− δ(x, w)||2(

∫ ∞
0

η2g∗(x, w, η2)dη2)dxdw.

Proof of Lemma 4 can be found in James & Stein (1961).
Proof of Theorem 1: Start with the prior density functions. Let gj(θ; η2) =

k2
j (θ)g(θ; η2), and πj(η2) = l2j (η

2)π(η2), where

(33) kj(θ) =


1 if ||θ|| < 1

1− log(||θ||)
log j if 1 ≤ ||θ|| ≤ j

0 if ||θ|| > j

(34) lj(η2) =


1 if η2 < 1
1− log(η2)

log j if 1 ≤ η2 ≤ j
0 if η2 > j

kj(θ) is as in Brown (1971) and in Brown & Hwang (1982) (and similar to a
choice in James & Stein (1961)). But the product structure in πj and form of
lj are additional and crucial choices. Deriving the best possible admissibility
results for the vary conditions in Remark 4 may require a different form of
prior sequence.

The main step is to apply Lemma 1, 4, and Cauchy-Schwartz inequality
in an appropriate way. We show that

(35) ∆j =
∫ ∫

[R(θ, η2, δG)−R(θ, η2, δGj )]gj(θ; η2)πj(η2)dθdη2

is uniformly upper bounded when g(θ; η2) and π(η2) satisfy Conditions 1
and 2. It is also true that the integrand in (35) converges pointwise to 0.
Hence by the dominated convergence theorem, ∆j → 0. Then the proof is
complete.
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By Lemma 1 and 4, we have

∆j =
∫ ∞
0

∫
Rp

[R(θ, η2, δG)−R(θ, η2, δGj )]gj(θ; η2)πj(η2)dθdη2

=
∫ ∞
0

∫
Rp
||δGj (x, w)− δG(x, w)||2(

∫ ∞
0

η2g∗j (x, w, η
2)dη2)dxdw

=
∫ ∞
0

∫
Rp
||

∫
∇xg∗j (x, w, η

2)dη2∫∞
0 η2g∗j (x, w, η2)dη2

−
∫
∇xg∗(x, w, η2)dη2∫
η2g∗(x, w, η2)dη2

||2

×(
∫
η2g∗j (x, w, η

2)dη2)dxdw.

Make the transformation t = θ − x to obtain

∇xg∗(x, w, η2) = ∇x
∫

Rp
f(x|θ, η2)f(w|η2)g(θ; η2)π(η2)dθ

= ∇x
∫

Rp
f(x|t, η2)f(w|η2)g(t + x; η2)π(η2)dt

=
∫

Rp
f(t|0, η2)f(w|η2)∇xg(t + x; η2)π(η2)dt

=
∫

Rp
f(x|θ, η2)f(w|η2)∇θg(θ; η2)π(η2)dθ

So if we let J∗(g, π) =
∫
Rp f(x|θ, η2)f(w|η2)g(θ; η2)π(η2)dθ, then

∇xJ∗(g, π) = J∗(∇θg, π).

Hence

∆j =
∫ ∞
0

∫
Rp
||

∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

−
∫∞
0 J∗(∇θgj , πj)dη

2∫∞
0 η2J∗(gj , πj)dη2

||2

×(
∫ ∞
0

η2J∗(gj , πj)dη2)dxdw

=
∫ ∞
0

∫
Rp
||

∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

−
∫∞
0 J∗(k2

j∇θg, πj)dη
2∫∞

0 η2J∗(gj , πj)dη2

−
∫∞
0 J∗(g∇θk

2
j , πj)dη

2∫∞
0 η2J∗(gj , πj)dη2

||2(
∫ ∞
0

η2J∗(gj , πj)dη2)dxdw

We need to find an upper bound for ∆j uniformly in j, such that ∆j → 0
by the dominated convergence theorem.
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To obtain a uniform upper bound for ∆j , consider the following Aj and
Bj :

Aj ≡
∫ ∞
0

∫
Rp
||

∫∞
0 J∗(g∇θk

2
j , πj)dη

2∫∞
0 η2J∗(gj , πj)dη2

||2(
∫ ∞
0

η2J∗(gj , πj)dη2)dxdw

= 4
∫ ∞
0

∫
Rp
||

∫∞
0 J∗(gkj∇θkj , πj)dη

2∫∞
0 η2J∗(gj , πj)dη2

||2(
∫ ∞
0

η2J∗(gj , πj)dη2)dxdw

≤ 4
∫ ∞
0

∫
Rp

(
∫ ∞
0

1
η2
J∗(g||∇θkj ||

2, πj)dη2)dxdw

= 4
∫ ∞
0

∫
Rp

1
η2
g(θ; η2)||∇θkj ||

2πj(η2)

×(
∫ ∞
0

∫
Rp
f(x|θ, η2)f(w|η2)dxdw)dθdη2

= 4
∫ ∞
0

∫
Rp

1
η2
g(θ; η2)||∇θkj ||

2πj(η2)dθdη2

≤ 4
∫ ∞
0

∫
Rp

1
η2
g(θ; η2)||∇θkj ||

2π(η2)dθdη2

In the third step, we use Cauchy Schwartz inequality.
By the definition of kj(θ),

||∇θkj(θ)||2 =
1

||θ||2 log2 j
I(1,j)(||θ||) ≤

1
||θ||2 log2(||θ|| ∨ 2)

I(1,j)(||θ||).

Note that ||∇θkj(θ)||2 → 0 for each θ ∈ Rn. The Growth Condition then
yields that ∫

Rp

∫ ∞
0

1
η2

sup
j

[||∇θkj(θ)||2]g(θ; η2)π(η2)dη2dθ <∞

By the dominated convergence theorem, Aj → 0 as j →∞.

Bj ≡
∫ ∞
0

∫
Rp
||

∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

−
∫∞
0 J∗(k2

j∇θg, πj)dη
2∫∞

0 η2J∗(gj , πj)dη2
||2

×(
∫ ∞
0

η2J∗(gj , πj)dη2)dxdw

=
∫ ∞
0

∫
Rp

||
∫∞
0 η2J∗(gj , πj)dη2

∫∞
0

J∗(∇θg,π)dη2∫∞
0

η2J∗(g,π)dη2
−

∫∞
0 J∗(k2

j∇θg, πj)dη
2||2∫∞

0 η2J∗(gk2
j , πj)dη2

dxdw
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=
∫ ∞
0

∫
Rp

||
∫∞
0 η2J∗(gj(

∫∞
0

J∗(∇θg,π)dη2∫∞
0

η2J∗(g,π)dη2
− 1

η2

∇θg
g ), πj)dη2||2∫∞

0 η2J∗(gk2
j , πj)dη2

dxdw

≤
∫ ∞
0

∫
Rp

∫ ∞
0

η2J∗(gj ||
∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

− 1
η2

∇θg

g
||2, πj)dη2dxdw

≤
∫ ∞
0

∫
Rp

∫ ∞
0

η2J∗(g||
∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

− 1
η2

∇θg

g
||2, π)dη2dxdw

In the fourth step, we apply Cauchy Schwartz inequality.
The integrand of Bj goes to zero as j →∞. By the Asymptotic Flatness

Condition, Bj is upper bounded uniformly in j. Then by the dominated
convergence theorem, Bj → 0. Applying triangular inequality, it is easy to
show that ∆j ≤ 2Aj + 2Bj . Combination of the results for Aj and Bj leads
to the result that ∆j → 0 as j → ∞. Condition 4 guarantees that the
sequence of measures described in (33) and (34) are finite. By Lemma 3
(Blyth’s method), the proof is complete.

Proof of Lemma 2: By∫ ∞
0

η2J∗(g||
∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

− 1
η2

∇θg

g
||2, π)dη2

=
∫ ∞
0

1
η2
J∗(
||∇θg||

2

g
, π)dη2 −

||
∫∞
0 J∗(∇θg, π)dη2||2∫∞
0 η2J∗(g, π)dη2

≤
∫ ∞
0

1
η2
J∗(
||∇θg||

2

g
, π)dη2,

we have∫
Rp

∫ ∞
0

∫ ∞
0

η2J∗(g||
∫∞
0 J∗(∇θg, π)dη2∫∞
0 η2J∗(g, π)dη2

− 1
η2

∇θg

g
||2, π)dη2dwdx

≤
∫

Rp

∫ ∞
0

∫ ∞
0

1
η2
J∗(
||∇θg||

2

g
, π)dη2dwdx

=
∫

Rp

∫ ∞
0

∫ ∞
0

∫
Rp

1
η2
f(x|θ, η2)f(s|η2)

||∇θg(θ; η2)||2

g(θ; η2)
π(η2)dθdη2dwdx

=
∫ ∞
0

∫
Rp

1
η2

||∇θg(θ; η2)||2

g(θ; η2)
π(η2)dθdη2.

Thus in Theorem 1, when prior density functions g(θ; η2) and π(η2) satisfy
Condition 1, 3 and 4, the corresponding generalized Bayes estimator for
normal mean θ is admissible.
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Proof of Theorem 2: We apply Theorem 1 and Lemma 2 to the hier-
archical Bayes model, and check Condition 1, 3 and 4 for the prior density
functions.

For Condition 1:∫
Sc

∫ ∞
0

1
η2

g(θ; η2)
||θ||2 log2(||θ|| ∨ 2)

π(η2)dη2dθ

=
∫
Sc

∫ ∞
0

∫ ∞
0

1
η2

g(θ; ν, η2)
||θ||2 log2(||θ|| ∨ 2)

h(ν)π(η2)dη2dνdθ

=
∫
Sc

∫ ∞
0

νb−k−1/2(1 + ν)−a−b−2

||θ||p−2k+1 log2(||θ|| ∨ 2)
dνdθ

In the second step, we integrate with respect to dη2.
By polar coordinate transformation,∫

Sc

1
||θ||p−2k+1 log2(||θ|| ∨ 2)

dθ ∝
∫ ∞
1

zp−1

zp−2k+1 log2(z ∨ 2)
dz.

Thus when p− 2k + 1− (p− 1) ≥ 1, that is k ≤ 1/2,∫
Sc

1
||θ||p−2k+1 log2(||θ|| ∨ 2)

dθ <∞.

By variable transformation, let t = 1/(1 + ν), then∫ ∞
0

νb−k−1/2(1 + ν)−a−b−2dν =
∫ 1

0
ta+k+1/2(1− t)b−k−1/2dt.

When b− k − 1/2 > −1, and a+ k + 1/2 > −1, the last line is finite.
Hence when k ≤ 1/2, k < b + 1/2, k > −a − 3/2, the Maruyama and

Strawderman (2005) prior satisfies Condition 1.
Before we check Condition 3, we first calculate the order of magnitude for

g(θ; η2).

g(θ; η2) =
∫ ∞
0

g(θ; ν, η2)h(ν)dν

∝
∫ ∞
0

ηpνb

νp/2(1 + ν)a+b+2
exp(−η

2||θ||2

2ν
)dν

∝
∫ ∞
0

ηpζp/2+a+b

ζb(ζ + 1)a+b+2
exp(−η2||θ||2ζ/2)dζ

∝
∫ ∞
0

ηpξp/2+a(η2||θ||2)b

(η2||θ||2)p/2−2(η2||θ||2 + ξ)a+b+2(η2||θ||2)
exp(−ξ/2)dξ

∝ η2+2b

||θ||p−2−2b

∫ ∞
0

ξp/2+a

(η2||θ||2 + ξ)a+b+2
exp(−ξ/2)dξ.(36)
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In the third step, we let ζ = 1/ν, and in the fourth step, we let ξ = η2||θ||2ζ.
This implies that

(37) g(θ; η2) ≈ η2+2b

||θ||p−2−2b(η2||θ||2 + 1)a+b+2
.

Here we use the symbol “ ≈ ” to mean “is of the exact order of”; ie, a(x) ≈
b(x) means there is an ε > 0 such that εa(x) < b(x) < ε−1a(x) for all x.

We can also show that

(38) ∇θg(θ; η2) ≈ −η2+2bθ

||θ||p−2−2b(η2||θ||2 + 1)a+b+2
(

1
||θ||2

+
(a+ b+ 2)η2

η2||θ||2 + 1
).

To proof (37), the integration in (36) can be written as

{
∫ 1

0
+

∫ ∞
1
} ξp/2+a

(η2||θ||2 + ξ)a+b+2
exp(−ξ/2)dξ ≡ I1 + I2

Note that a+ b+ 2 > 0. For the upper bound of I1 + I2:

I1 =
∫ 1

0

ξp/2+a

(η2||θ||2/ξ + 1)a+b+2ξa+b+2
exp(−ξ/2)dξ

<

∫ 1

0

ξp/2+a

(η2||θ||2 + 1)a+b+2ξa+b+2
exp(−ξ/2)dξ

≡ 1
(η2||θ||2 + 1)a+b+2

A.

The second step is correct because ξ < 1.

I2 ≤
∫ ∞
1

ξp/2+a

(η2||θ||2 + 1)a+b+2
exp(−ξ/2)dξ

≡ 1
(η2||θ||2 + 1)a+b+2

B.

The first step is correct because ξ > 1.
For the lower bound of I1 + I2:

I1 >

∫ 1

0

ξp/2+a

(η2||θ||2 + 1)a+b+2
exp(−ξ/2)dξ

≡ 1
(η2||θ||2 + 1)a+b+2

C.

I2 =
∫ ∞
1

ξp/2+a

(η2||θ||2/ξ + 1)a+b+2ξa+b+2
exp(−ξ/2)dξ
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>

∫ ∞
1

ξp/2+a

(η2||θ||2 + 1)a+b+2ξa+b+2
exp(−ξ/2)dξ

≡ 1
(η2||θ||2 + 1)a+b+2

D.

Therefore, we have shown that

I1 + I2 ≈
1

(η2||θ||2 + 1)a+b+2
,

which implies (37).
To prove (38), We can differentiate with respect to θ on both sides of

(36), and then use the same argument as above. Therefore, (38) is correct.
For Condition 3:∫

Rp

∫ ∞
0

1
η2

||∇θg(θ; η2)||2

g(θ; η2)
π(η2)dη2dθ

≈
∫

Rp

∫ ∞
0

||θ||2

||θ||p−2b−2(η2||θ||2 + 1)a+b+2

×(
1
||θ||2

+
(a+ b+ 2)η2

η2||θ||2 + 1
)2

1
η2k−2b

dηdθ

≈
∫

Rp

∫ ∞
0

(
1
||θ||2

+
(a+ b+ 2)2||θ||2η4

(η2||θ||2 + 1)2
)

× 1
||θ||p−2b−2(η2||θ||2 + 1)a+b+2η2k−2b

dηdθ

∝
∫ ∞
0

∫ ∞
0

(1 +
(a+ b+ 2)2r4η4

(η2r2 + 1)2
)

1
r1−2b(η2r2 + 1)a+b+2η2k−2b

dηdr

≈
∫ ∞
0

∫ ∞
0

1
r1−2b(η2r2 + 1)a+b+2η2k−2b

dηdr.(39)

In the third step, we change variables to r = ||θ||. To make (39) be finite,
when η → ∞ we need 2(a + b + 2) + 2k − 2b > 1, when η → 0 we need
2k − 2b < 1, when r → 0 we need 1 − 2b < 1 and when r → ∞ we need
1 − 2b + 2(a + b + 2) > 1. Combining the restrictions for (39) to be finite,
we have

−a− 3/2 < k < b+ 1/2, b > 0, a > −2.

For Condition 4, when k < b+ 1/2 and b > 0, we have∫
||θ||<B

∫
η2<B

g(θ; η2)π(η2)dη2dθ
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≈
∫
||θ||<B

∫
η2<B

η2+2b

||θ||p−2−2b(η2||θ||2 + 1)a+b+2

1
η2k

dηdθ

≈
∫
||θ||<B

1
||θ||p−2

dθ

∝
∫
r<B

r1+2bdr <∞.

Combining all the results above, when −a− 3/2 < k ≤ 1/2, a > −2 and
b > 0, the corresponding Maruyama and Strawderman (2005) priors lead to
admissible generalized Bayes estimators for the normal mean θ.

To prove Theorem 3, the following lemma is very useful:

Lemma 5. Let δ0 be any admissible procedure and Θ be the parameter
space of θ and η. If there is a continuous function H : Θ→ (c,∞) for c > 0
and a procedure δ′ with R(θ, η, δ′) <∞ for all θ and η, and

lim inf
||θ||→∞,η→∞

H(θ, η)(R(θ, η, δ0)−R(θ, η, δ′)) = λ > 0

then δ0 is generalized Bayes for some (generalized) prior G satisfying∫ ∫
H−1(θ, η)G(dθ, dη) <∞.

This result has been given by Brown (1979, 1980). It shows that proce-
dures which can be improved on in a neighborhood of infinity are either
inadmissible or are generalized Bayes for a (possibly improper) prior whose
rate of growth at infinity is of an appropriate order.

Proof of Theorem 3: We apply Lemma 5 to the hierarchical Bayes
model (20) and obtain the necessary condition for δG to be admissible.
Let δG(x,w) be an admissible generalized Bayes estimator. Let H(θ, η) =
max(||θ||2η2, 1). First we will show that∫ ∞

0

∫ ∞
0

∫
Rp
H−1(θ, η)G(dθ, dη, dν) =∞

Proof: ∫ ∞
0

∫ ∞
0

∫
Rp
H−1(θ, η)G(dθ, dη, dν)

∝
∫ ∞
0

∫ ∞
0

∫
Rp

1
max(||θ||2η2, 1)

ηp

νp/2
exp(−η

2||θ||2

2ν
)

×νb(1 + ν)−a−b−2 1
η2k+1

dθdη2dν
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>

∫ ∞
0

∫ ∞
0

∫
||θ||2η2≤1

ηp

νp/2
exp(−η

2||θ||2

2ν
)

×νb(1 + ν)−a−b−2 1
η2k+1

dθdη2dν

≈
∫ ∞
0

∫
||θ||2η2≤1

η2b−2k+3||θ||−p+2b+2(||θ||2η2 + 1)−a−b−2dθdη2

∝
∫ ∞
0

∫
R2η2≤1

1
(η2)k−b−3/2

1
R−1−2b

1
(R2η2 + 1)a+b+2

dRdη2.(40)

In the third step, we use the result in the proof of Theorem 2 that∫
νb−p/2 exp(−η

2||θ||2

2ν
)(1 + ν)−a−b−2dν ≈ ||θη||−p+2b+2(||θη||2 + 1)−a−b−2.

In the fourth step, we use the polar coordinate transformation for θ.
(40) is infinity because∫ ∞

0

∫
R2η2≤1

1
(η2)k−b−3/2

1
R−1−2b

1
(R2η2 + 1)a+b+2

dRdη2

>

∫ ∞
0

∫ 1/R2

0

1
(η2)k−b−3/2

1
R−1−2b

max((
1
2

)a+b+2, 1)dη2dR

∝
∫ ∞
0

1
R4−2k

dR =∞.

The proof is complete.
If we compare the risk function of δG with that of the James-Stein esti-

mator δJ−S in the neighborhood of infinity, then

lim inf
||θ||→∞,η→∞

H(θ, η)(R(θ, η, δG)−R(θ, η, δJ−S)) = λ > 0

is not true. Otherwise, it is a contradiction with Lemma 5.

Lemma 6. When p/2+a+1
m/2−k−1/2−a <

p−2
m+2 and H(θ, η) = max(||θ||2η2, 1),

then

lim inf
||θ||→∞,η→∞

H(θ, η)(R(θ, η, δG)−R(θ, η, δJ−S)) = λ > 0.

Proof of Lemma 6: Let z = ||x||2/w. We compare the risk function for
δG in (27) and (28) with the risk function for James-Stein estimator δJ−S
when ||θ||η →∞, where

δG = (1− φ(z)
z

)x ≡ x + γG(x, w)

δJ−S = (1− c

z
)x ≡ x + γJ−S(x, w)
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with c = p−2
m+2 .

The difference between two risk functions can be calculated by Stein’s
unbiased estimate of risk method:

R(θ, η, δG)−R(θ, η, δJ−S)
= 2Eθ,η(x− θ)TγG(x, w)η2 − 2Eθ,η(x− θ)TγJ−S(x, w)η2

+Eθ,η||γG(x, w)||2η2 − Eθ,η||γJ−S(x, w)||2η2

= 2Eθ,η∇x · [γG(x, w)− γJ−S(x, w)]

+η2Eθ,η[||γG(x, w)||2 − ||γJ−S(x, w)||2],

where

Eθ,η∇x · γG(x, w) = −Eθ,η[(p− 2)
φ(z)
z

+ 2φ′(z)]

Eθ,η∇x · γJ−S(x, w) = −cEθ,η
(p− 2)
z

.

When ||θ|| → ∞ and η → ∞, z = ||x||2/w → ∞. φ(z) is monotonically
increasing in z and

lim
z→∞

φ(z) =
p/2 + a+ 1

m/2− k − 1/2− a
≡ d

lim
z→∞

φ′(z) = 0.

So if d ≤ c− ε for any ε > 0, we have

lim inf
||θ||→∞,η→∞

H(θ, η)(R(θ, η, δG)−R(θ, η, δJ−S))

= lim inf
||θ||→∞,η→∞

||θ||2η2[−2(p− 2)Eθ,η[
1
z

(φ(z)− c)]− 4Eθ,ηφ
′(z)

+η2Eθ,η[
w

z
(φ(z)− c)(φ(z) + c)]]

≥ lim inf
||θ||→∞,η→∞

||θ||2η2[−2(p− 2)Eθ,η[
φ(z)− c

z
] + η2Eθ,η[

w

z
(φ(z)− c)(2c− ε)]]

= lim inf
||θ||→∞,η→∞

||θ||2η2[Eθ,η[(φ(z)− c)(−2(p− 2)
z

+ η2w

z
2c)] + εη2Eθ,η[

w

z
(c− φ(z))]]

≥ Eθ,η[(d− c)( lim inf
||θ||→∞,η→∞

||θ||2η2(
−2(p− 2)χ2

m

η2||x||2
+

2c(χ2
m)2

η2||x||2
))]

+ lim inf
||θ||→∞,η→∞

||θ||2η2εη2Eθ,η[
w

z
(c− d)]



NORMAL MEAN PROBLEM WITH UNKNOWN VARIANCE 29

= (d− c)E[ lim inf
||θ||→∞,η→∞

||θ||2 1
||x||2

]E(−2(p− 2)χ2
m + 2c(χ2

m)2)]

+ lim inf
||θ||→∞,η→∞

||θ||2η2εη2Eθ,η[
w

z
(c− d)]

= lim inf
||θ||→∞,η→∞

||θ||2η2εη2Eθ,η[
w

z
(c− d)]

≥ lim inf
||θ||→∞,η→∞

||θ||2ε2Eθ,η[
1
||x||2

]Eη[(χ2
m)2]

= lim inf
||θ||→∞,η→∞

||θ||2ε2(2m+m2)Eθ,η[
1
||x||2

].

In the fifth step, we use the independence of X and W . In the sixth step,
we use the fact that c = p−2

m+2 , Eχ2
m = m and E(χ2

m)2 = m(m+ 2).
It is well known that ||x||2, 1

η2 times a noncentral χ2
p with noncentrality

parameter ||θ||2, is distributed the same as 1
η2 times a random variable V

where V |L ∼ χ2
p+2L and L ∼ Poisson(1

2 ||θ||
2η2). Hence

Eθ,η
1
||x||2

= Eθ,η[
η2

χ2
p+2L

] = Eθ,η[E[
η2

χ2
p+2L

|L]] = Eθ,η
η2

p− 2 + 2L
,

where

Eθ,η
1

p− 2 + 2L
=

∞∑
l=0

1
p− 2 + 2l

e−
1
2
||θ||2η2

l!
(
1
2
||θ||2η2)l

>
∞∑
l=1

1
(p− 2)2l

e−
1
2
||θ||2η2

l!
(
1
2
||θ||2η2)l

>
1

2(p− 2)

∞∑
l=1

e−
1
2
||θ||2η2

(l + 1)!
(
1
2
||θ||2η2)l

=
1

2(p− 2)
1

||θ||2η2
(1− e−

1
2
||θ||2η2 − e−

1
2
||θ||2η2 1

2
||θ||2η2).

When H(θ, η) = max(||θ||2η2, 1), we have

lim inf
||θ||→∞,η→∞

H(θ, η)(R(θ, η, δG)−R(θ, η, δJ−S)) > 0.

The proof of Lemma 6 is complete.
By Lemma 6, if δG is an admissible generalized Bayes estimator, then
p/2+a+1

m/2−k−1/2−a ≥
p−2
m+2 . Otherwise, it is a contradiction with Lemma 5. After

some algebra, it is equivalent that (a+ 2)m+ (k + a+ 3/2)p+ 1− 2k ≥ 0.
The proof of Theorem 3 is complete.
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Karlova, Prague.

[29] Stein, C. (1981) Estimation of the mean of a multivariate normal distribution. Annals
of Statistics 9, 1135-1151.

[30] Strawderman, W. E. (1971) Proper Bayes minimax estimators of the multivariate
normal mean. Annals of Statistics 42, 385-388.

[31] Strawderman, W. E. (1973) Proper Bayes minimax estimators of the multivariate
normal mean vector for the case of common unknown variances. Annals of Statistics
1, 1189-1194.

[32] Wells, M. T. and Zhou, G. (2008) Generalized Bayes minimax estimators of the mean
of multivariate normal distribution with unknown variance. Journal of Multivariate
Analysis 99, 2208-2220.

[33] Zellner, A. and Hong, C. (1989) Forecasting international growth rates using Bayesian
shrinkage and other procedures. Journal of Econometrics 40, 183-202.

Department of Statistics
The Wharton School
University of Pennsylvania
400 Jon M. Huntsman Hall
3730 Walnut St.
Philadelphia, PA 19104-6340
E-mail: lbrown@wharton.upenn.edu

Department of Operations Research
& Financial Engineering
Princeton University
Room 214, Sherrerd Hall
Princeton, NJ 08544
E-mail: xhan@princeton.edu

mailto:lbrown@wharton.upenn.edu
mailto:xhan@princeton.edu

	Introduction
	Background
	Outline and Contributions

	Definition and Notation
	Main Results
	Admissibility Theorem
	Application to a Hierarchical Prior Setting
	Necessary Condition for Admissibility in a Hierarchical Prior Setting

	Numerical Analysis
	Hierarchical Prior Selection
	Comparison with James-Stein Positive Part Estimator
	Performance of Generalized Bayes Estimators

	Proofs
	Acknowledgements
	References
	Author's addresses

